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Abstract-A new analytical approach is presented to estimate the local and mean heat flux from a wall
maintainedat a given temperatureto a fluid flowing in a laminarregime. Theprocedurecanbeapplied to the
analysis ofplaneas well as cylindrical geometry configurations while the fluid behaviourcan beconsidered
Newtonian or non-Newtonian providedthe axialvelocity distributioncan be represented byan analytical
function of position. The method is simple and gives veryaccurateresultswhen comparedwithnumerical
estimates previously presented in the literature. Anumberofcomparisons arepresented in thisworkshowing
that maximum deviations are always below 3.5%in termsof mixing cup temperature. The technique is so
simplethat it should be useful for the analysis ofsimilarproblems in the field of convective heat and mass

transfer.

l'\O~IEl'\CLATURE

Ai() Airy function
C, parameter defined by equation (14)
C2 parameter defined by equation (15)
C3 parameter defined by equation (16)
C4 parameter defined by equation (17)
C, specific heat capacity
F0 first term in equation (20)
F, first perturbation term in equation (20)
g parameter defined by equation (27a)
Gz Graetz number
k thermal conductivity
AI constant to denote flat (0) or cylindrical

geometry (1)
m coefficient in equation (to)
N constant index in power-law model
tl coefficient in equation (to)
PC;] incomplete gamma function [see equation

(35)]
p parameter defined by equation (27b)
Pr Prandtl number
q parameter in equation (35)
R tube radius or half thickness of a flat duct
r normal coordinate measured from the

axial axis of the duct
Re Reynolds number
S Laplace transform variable
T dimensionless temperature
Tm dimensionless mixing cup' temperature
t dimensional temperature
to inlet fluid temperature
t, wall temperature
<V) average velocity in the duct
IV coefficient in equation (to)
X transformed variable of Y when S ..... co
x axial flow coordinate
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Y dimensionless radial (pipe) or cross­
channel (flat duct) coordinate

Z dimensionless axial coordinate

Greek symbols
p parameter in equation (28)
rr ) gamma function
y parameter in equation (28)
() parameter in equation (31)
p density
r variable in equation (35)
rP Laplace transform of T
rPo first term in equation (7), = I
rP, first perturbation term in equation (7)
rP2 second perturbation term in equation (7)
rP3 third perturbation term in equation (7)
t» constant in equation (35)

Superscripts
denotes first derivative
denotes second order derivative

I. 11'IOTRODUCflO1'IO

IN MANY industrial applications, heating or cooling is
achieved by allowing the liquid to flowin ducts, or in the
form of a thin film, where the solid boundaries are
maintained at a different temperature from that of the
bulk. There are many practical situations in which the
velocity field is fully developed but not the temperature
field. For example a molten polymer, because of its high
viscosity, can be regarded as a fully developed flow and
due to its low thermal conductivity will present an
undeveloped temperature field. Other examples can be
found in food engineering processes related with the
cooling and heating of fluid streams. Moreover the
rheological behaviour of many of these fluids can only
be described with a non-Newtonian model.

Possibly due to these reasons, investigations in this
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compared with the corresponding results generated by
the infinite series referred to above. The agreement is
excellent, as will be shown below.

(4)

(6a,b)

(2a,b)

l/J = 1, Y = 1,

l/J' = 0, y = 0

t-to (r)T=-, y= -R'
t.-to

Z = n(M + l)(x/R)/(Re Pr), (2c)

Re Pr = pCp(V)R, (2d)
k

T=O, Z=O 1> Y~ 0, (3a)

T= 1, Z~O y= 1, (3b)

aT
(3c)-=0 Z~O y=o.ay ,

with the boundary conditions

Solutions to other situations can be found by a suitable
application of the superposition principle. By defining

l/J=S too Texp(-SZ)dZ.

where

2. ANALYSIS

Assuming laminar flow, constant physicochemical
properties of the fluid, and a power law model for
describing the rheological behaviour of the fluid, the
dimensionless energy balance can be written as

!...- (y.l! aT) = y.\I(I- yN+ 1)aT (1)
ay er oz

where the prime denotes first derivative with respect
to Y.

A general solution to equation (5) would lead to a
series expression which should be avoided. Rather
asymptotic solutions for small and large S values willbe

Equation (1) can be reduced to the following ordinary
differential equation r

~ (y.lf dl/J) = y.lf(l- yN+ I)Sl/J (5)
dY dY

t being the dimensional temperature, x the axial flow
coordinate, k the thermal conductivity ofthe fluid, (V)
the average velocity in the duct, R the tuberadius or half
thickness of a flat duct, r the normal coordinate
measured from the axial axis of the duct, C; the specific
heat capacity, p the fluid density and M = [0,1] is to
denote fiat and cylindrical geometry. Parameter n will
be defined below.

In writing equation (1) it is assumed that molecular
axial transport and mechanical energy dissipation are
negligible. Since the problem is linear, equation (1)will
be solved subject to the following initial and boundary
conditions:

field have led to a large body of literature, including
entire books. When the flow is steady and laminar and
the fluid properties are assumed to be constant, the so
called Graetz-Nusselt problem is met. Its solution
allows the prediction of the mixed-cup temperature
along the system and the local flux at the heating or
cooling surface. This is not, however, very simply
solved.

Since the problem is linear the analytical solution can
be obtained by the method of separation of variables
and takes the form of an infinite sum of eigenfunctions.
Theseries does not converge very rapidly when the duct
is short. This difficulty is avoided by using a sort of
Leveque [I] solution for small contact times and the
series solution for large contact times.

The case of a Newtonian fluid was repeatedly solved
with different analytical approaches by many authors
after the pioneering works of Graetz [2] and Nusselt
[3], until Brown [4] presented his accurate work in
which up to eleven eigenvalues were determined by a
very precise numerical technique. Brown's [4]
numerical results can be considered as the most
accurate for the case of Newtonian fluids. They can be
used in circular pipes or in flat ducts.

In the case of non-Newtonian fluids the situation is
worse as the eigenfunctions must be determined, with
considerable effort, for each particular case, Lyche and
Bird [5] investigated the problem of non-Newtonian
fluids with a 'power law' model which has been proven
useful for estimating the pressure drop in flow systems.
it is interesting to mention that they only presented four
eigenvalues f~r integer values of the inverse power
index of the non-Newtonian model. More recently
Suckow et a1. [6] presented a contribution which
provides the first two eigenvalues for a dilatant non­
Newtonian fluid in which the inverse power index was
0.5. When the method is compared with previous
results for Newtonian fluids a rather poor agreement is
found due to the small number of calculated eigen­
values.

On the other hand, some attempts ha vebeen made to
extend Leveque's [1] solution, such as those of Shih and
Tsou [7] and Richardson [8]. However in spite of these
great efforts, the range of validity for the expressions
obtained is not known but they are certainly valid for
short tube length or large Graetz (Gz) numbers.

The intention of this contribution is to develop a
rapid analytical procedure to estimate the local heat
flux and the mixing-cup temperature along the duct
which can be applied to any kind of non-Newtonian
fluid model and geometrical flow configuration with a
certain degree of symmetry. Also, the method can
produce results valid in the whole range of Graetz
numbers (0 ~ Gz ~ (0).

To achieve these purposes a matching technique will
be used. Asymptotic expressions of local flux deduced
in the Laplace transform field, valid for small and large
values, are matched with a suitable expression. When
antitransformed it provides an analytical expression
for the local flux. Finally the results obtained are
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attempted. In fact when S -+ 0, equation (5) itself
suggests the following series as a solution:

F; -MFo= (N + I)XFI-(N+ 1)(N/2)X2F
o (22)

subject to
(7)

which once replaced into equation (5) and terms of like
power of S are equated generates the following set of
independent ordinary differential equations :

~ (you dc/>i) = yM(t _ yN+ I)c/> '_I (8)
dY dY ,

where primes and double primes denote first and
second derivatives with respect to X. The general
solution to equation (21) is well known in terms of Airy
functions [A~ )] [9J

r; = A j[(N+I)IJ3X]/A,{O) (24)

with i = 1,2, . .. and C/>O = 1.Clearly equations (S) must
be solved with

c/>.{I) = 0; ¢:{O) = o. (9a,b)

while equation (22) only needs a particular solut ion,
which can be written in terms of Fo,

(25)

After some simple algebraic manipulations it can be
shown that

Thus when S -> 00, the following asymptotic ex­
pression is found for the flux in the transformed field:

(10) ..!.. dq,I = gS-2/~_p/S (26)
S dY Y=I

where

(11) g = -A;(O)(N + 1)1/~/Ai(O), (27a)

p = 0.5M+0.1N. (27b)

(28)
g(S +pjI/3

(S+y)

provided the unknowns P and y fulfil the following
equations:

gpi/~ = ny, (29)

(1/3)gp-2/3 y - l _ gpl/3y-2 = III. (30)

Thus equation (28) will coincide with equation (10) up
to terms of order S and with equation (26)up to terms of
order S-2/3. However equation (28) can be anti­
transformed if p > y, as will be shown below. In those
cases where such a condition is not met a more accurate
rational expression is needed. A new trial is made with

..!.. d¢I = g(S+p)1/3 pS
S dY Y=I (S+y) - (S+W' (31)

Byexpanding equation (31)forsmall and large values of
S and comparing with equations (10) and (26),
respectively, the three unknowns must fulfil the
following system of algebraic equations:

3111n2y3c5 2 = _3n3c52y2+g3c52_3n2p/, (32)

9n6y4c53 _ 3n3g3y2c53 _ g6c53
0

+ 18pn5y6_91\'n5y6c53 = O. (33)

After solving the system (32H33), fJ can be calculated
from equ ation (29). It should be noticed that equation
(31) coincides exactly with equations (10) and (26) for

Expressions (10) and (26), valid for small and large
values ofSrespectively,should be matched by asuitable
rational expression in such a way that its expansions,
for small and large values of S, should coincide with
equations (10)and (26),respectively. The first proposal
is

(21)

(18)

F~ = (N+ I)XFo,

where

On the other hand when S -> 00, a change of the
independent variable Y is suggested,

C1 = [(N+M+2)(N+3)r l-[2(M+1)]-I, (14)

C2 = C3-C4+C~-[S(M+l)(M+3)]-I, (15)

C~ = [C 1+(M+W
1]/[(N+ft.f+4)(N+5)], (16)

(1/C4) = 2(N + M + 2)(N + 3)2(2N + M + 5). (17)

By replacing Y by X in equation (5) and expanding by
the binomial theorem the resulting expressions yield

d2¢ d¢
dX2 = MS-I/~ dX +(N+l)X¢

x [1-(NX/2)S- I/3] +O(S-213). (19)

Equation (19) can be solved by the following series
solution:

By introducing equation (20)into equation (19)and by
collecting terms of equal power of S, the following
system of ordinary differential equations results:

n = ¢'I(I) = (M +W1-(N+M +2)-1,

III = c/>i(l) = 2[(M + I)(M +3)r I

-[CI +(M +WI](N+M +4)-1

+[(N +M +2)(N +3)(2N+M +5)] -1 +Cln, (12)

IV = ¢j(t) = [SCM + I)(M + 3)(M + 5)]-1

-{C3 + [S(A!+ I)(A!+3)]'-1}

~ (N +M +6)-1 +(C~+C4)(2N+M + 7)-1

-Ci3N+M +S)-I +CIIII+(C2-Ci)n (13)

with
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FIG. I. Percentage deviations between our Tm estimates (full
line) and Suckow et a/"s [6] (broken line) with almost exact
Brown's [4] values. Plane geometry (1\1 = 0) and Newtonian

fluids (N = I).

need to take into account the second term of equation
(31)which is equivalent to assuming p = 0 in equation
(37). Under these conditions the method is straight­
forward since the only difficulty is the numerical
calculation of the incomplete gamma function P[;]
which can be performed by the series suggested by
Zelen [10]. It is shown that the maximum deviation is
about 3.5% in the whole range of Z values. Results of
Suckow et al. [6] are also presented for comparison
purposes (N = 1)showing that their results can only be
considered accurate when Z > 0.5. This conclusion
should have been expected since only two eigenfunc­
tions were evaluated by Suckow et al. [6]. However
since their results are the only available heat transfer
calculations for non-Newtonian fluids in flat ducts
these and our approximations are presented in Table 1
(N = 0.5). Once again it is shown that the agreement is
fair when Z > 0.5. Taking into account the case of
Newtonian Iluids, we can safely conclude that our
approximate procedure will predict fairly accurate
values of Tm in the whole range of Z values. When heat
transfer in tubes is considered (M = 1)it is not possible
to find a suitable root of y with equations (29) and (30).
Thus the more complex system (32}-{33) has to be
solved for y and b. Once again the mixing-cup
temperature (T,J calculated with equation (37) is
graphically compared in Fig. 2 with the very accurate
results of Brown [4] for N = 1. The agreement is
excellent, better than in the case offlat ducts since in this
case (M = 1) more parameters are needed to fit the
asymptotic equations of the local fiux in the Laplace
field with the rational expression. It should be noted
that when Z < 0.002 Brown's [4] solution begins to
depart from the exact solution. As pointed out in the
introduction a series solution would need a con-

(35)1 f'"P[q;w] = r( r q
-

I exp(-r)dr.
q) 0

3. RESULTS AND DISCUSSION

Though most previous works are based on a
cylindrical geometric configuration, it is also interest­
ing to analyze the accuracy of approximate results
obtained in fiat ducts. Figure I presents deviations
between approximate values of Tm calculated with
equation (37)and those generated by the very accurate
numerical calculations of Brown [4] for Newtonian
fluids (N = 1).For plane geometry (1\1 = 0) there is no

where I'( ) denotes gamma function and P[;] the
incomplete gamma function:

The mixing-cup temperature can be calculated from
equation (34) taking into account its definition and the
energy balance [equation (1)]:

Tm=~ [I yM(l-yN+')TdY
11 Jo

= ~ [Z oTI dZ (36)
1IJOOYY;1 •

Introducing equation (34) into equation (36) yields

Tm = P[i;pZ]_(P;y)'/3 exp(-yZ)

x P[i;(p-y)Z]-(Pj1l)Z exp(-bZ). (37)

Expression (37) should be useful in the range of all Z
values (0 ~ Z ~ (0) representing a continuous func­
tion of Z for each particular situation (!If and N given).
It should be stressed that the procedure can be applied
to any other kind of rheological model provided the
velocity distribution function is known. Moreover the
case of shear stress dependent thermal dilTusivity could
be handled with exactly the same procedure.

It is possible to find an expression for the local flux
and mixing-cup temperature by applying the super­
position or convolution theorem when other boundary
conditions must be considered.

small and large values of S respectively although the
algebraic complexity of the problem has increased. In 12

any case it is not difficult to reduce the system (32}-{33) 13

in a unique non-linear algebraic expression with only
one unknown which can be solved by Newton­
Raphson methods. It should be stressed that equation
(28)is a particular case of equation (31).Thus by taking
the antitransform of equation (31) the expression for
local flux is found,

:~ 1)';1 = [gZ-I/3 exp(-pZ)jr(2j3)]

+g(P_y)I/3 exp(-yZ)P[~;(P-i')Z]

d
- PdZ [Z exp (- bZ)] (34)
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Table I. Comparison of Tm values obtained in this work with those of Suckow et al. [6]. Plane geometry (M = 0) and N = 0.5

Z 0.001 0.002 0.005 O.ot 0.02 0.05 0.1 0.2 0.5

Th is work 0.015409 0.024463 0.045079 0.071597 0.113738 0.209454 0.330092 0.507401 0.798038 0.953912

Suckow et al. 0.084093 0.081402 0.074539 0.066698 0.061739 0.096028 0.204511 0.409649 0.762305 0.947831
[6]

Table 2. Comparison of Brown's (almost exact) results with
those obtained in thi s work, Shih and Tsou [7] and Lyche and
Bird [5]. Cylindrical geometry (M = I)and Newtonian fluids

(N = Il

[8] since our procedure does no t require the numerical
solution of any ordinary differential equations.
Moreover the results of Shih and Tsou [ 7] are only
valid in a limited range of Z values as shown in Fig. 2
(dashed curve) for the case of N = I and At = 1. In fact
when Z > 0.2 their results are no longer valid.

Finally our procedure can be extended to analyze
other related situations such as the effectof mechanical
energy dissipation or cases where boundary conditions
are given in terms of flux rather than the solid-fluid
temperature.

siderable number of terms to predict the flux for
such small values of Z . In this region our soluti on
coincides exactly with the asymptotic solution of Shih
and Tsou [7] (dashed line Fig. 2) which is shown to be
valid up to Z ~ 0.1. Incidentally it can be shown that
our simple analytical asymptotic solution deduced in
this work with only two terms, once inverted, also
coincides with the numerical solution ofShih and Tsou
[7] up to Z ~ 0.1. (The maximum deviation at Z = 0.1
is about 4%.)

In Table 2 our results are compared with tabulated
values ofLyche and Bird [5]. Theagreement isexcellent
within the range in which Lyche and Bird's [5] results
apply (Z ~ 0.05).

It can be concluded that the method presented here
can be very useful, due to its simplicity, to estimate the
flux and the mixing-cup temperature in laminar flow
configurations formed by non-Newtonian fluids. It is
not restricted to any particular rheological model.
Once the velocity profile is known the method can be
used to estimate the values of /I, Ill, IV, 9 and p.
Furthermore the method should also be useful to
estimate the rate of dissolution of a solid by the effectof
a laminar flow of a non -Newtonian fluid.

It is interesting to note that the method herewith
presented demands much less effort than the extended
Leveque solution of Shih and Tsou [7] or Richardson

Shih and
Z Brown [4] This work Tsou [7]

0.00 1 0.038715 0.038247 0.038251
0.002 0.059736 0.059659 0.059683
0.005 0.106572 0.10645 1 0.106580
0.01 0.163781 0.163482 0.163814
0.02 0.248894 0.248405 0.249035
0.05 0.421213 0.421350 0.422248
0.1 0.604701 0.605891 0.610085
0.2 0.810290 0.810310 0.840523
0.5 0.978856 0.978675 1.098401
I 0.999454 0.999514 0.942796

Lyche and
Bird [5]

0.421
0.605
0.810
0.979
0.999
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·IG. 2 . Percentage deviations between our Tm estimates (full
ne) and Shih and Tsou's [7] (broken line) with almost exact
rown's [4] value s. Cylindrical geometry (At = 1) and

Newtonian fluids (N = 1).
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TRANSFERT THERMIQUE A DES FLUIDES NEWTONIENS ET NON-NEWTONIENS EN
ECOULEMENT LAMINAIRE

Resume-On presente une nouvelle approcheanalytique pourestimer la flux thermique local ou moyen entre
uneparoi maintenue aune ternperaturedonnee et un f1uidequi s'ecoule en regime laminaire. La procedure peut
etre appliquee al'analyse des configurations planes aussi bien que cylindriques, tandis que Ie f1uide peut etre
newtonien ou non, pourvu que la distribution de vitesse axiale soit representee par une fonction analytique de
position. La methode est simple et clle donne des resultats tres precis en comparaison des resultats numeriques
presentes anterieurement. Quelques comparaisons sont donnees dans cct article qui montre que les deviations
maximales sont toujours inferieures a3,5%en terme de temperature de melange. La technique est si simple
q u'elle peut etre utile dans I'analyse de pro blernes semblables dans le domaine d u transfert convectifde chaleur

et de masse.

WARMEOBERTRAGUNG AN NEWTONSCHE UND NICHTNEWTONSCHE FLUIDE
UNTER LAMINAREN BEDINGUNGEN

Zusammenfassung-Es wird ein neuer analytischer Ansatz zur Bcstimmung des ortlichen und mittleren
Warmestroms von einer Wand, die aufkonstanterTemperatur gehalten wird, an ein laminar stromendes Fluid
vorgeschlagen, Das Verfahren kann sowohl auf ebene Flachen als auch Zylinder angewandt werden und
sowohl bei Newtonschen als auch nicht-Newtonschen Fluiden, vorausgesetzt, daf die axiale
Geschwindigkeitsverteilung als analytische Fuktion des Ortes angegeben werden kann. Das Verfahren ist
einfach und liefert sehr genaue Ergebnisse, wenn man es mit numerischen Naherungsverfahren vergleicht, wie
sie in der Literatur zu finden sind. In der Arbeit wird anhand mehrerer Vergleiche gezeight.daf die maxirnale
Abweichung imrner weniger als 3,5%bezogen auf die Mischungstemperatur, ausmacht. Das Verfahren ist so
einfach, dab es mit Vorteil aufdie Untersuchung ahnlichter Probleme im Gebietderkonvektiven Warrne- und

StolTiibertragung angewandt werden konnte,

TEnJIOnEPEHOC K HblOTOHOBCKHM H HEHblOTOHOBCKHM )I(HJJ.KOCT.HM nPH
TE4EHHH B JIAMHHAPHOM PE)I(HME

AHHOTaUHII-npellCTaBnell 1I0Bhlii ananurnsecxnn MeTOll onexxn noxansnoli U cpcnneii Beml'lHHhI
rennoaoro nOTOKa OT CTeHKH, nonnepxueaexrolt npn aanaanoii revneparype, K noroxy lKUllKOCTU
npu na~IIlHapHOM Te'leHlIII lKUllKOCTH. Meroa MO)l(1I0 ncnonsaoaars nns anamna KaK nnocxoii, TaK
U uannunpasecsoti reOMeTpHII, a noaeneune lKUllKOCTU MOlKeT paccsrarpnaan.cs KaK lIhlOTOIlOBCKoe
llJIU ueHhIOTOIlOBCKoe, ecmt pacnpenenenne ocesoit CKOpOCTIl npcacraausro B aune anamrruxecxori
<PYIlKU11II npocrpaucrueanoti xoopnnnarsr. MCTOll npocr II naer aecssra TO'lIlble peayrn.rarsr npn
cpaBUCHUII c 1I~ICIOUlll~IIICli B nnreparype '1I1CnellIlblMII OUCHKaMU.

Ilposeneuo IleCKOJIhKO cpaaueuati, nosaauaaioumx, 'ITOMaKCIl~taJIhHali norpeumocrs lie npessnuaer
3,5%no TeMnepaType cxreureaua.

Meron HaCTOJIbKO npocr, 'ITO ero cneayer IICnOJIh30BaTh nnll aaanoruxuux aanas KOHBeKTlIBIlOrO
TCnnO-lI xtacconepenoca.




