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Abstract—A new analytical approach is presented to estimate the local and mean heat flux from a wall
maintained at a given temperature to a fluid flowing in a laminar regime. The procedure can be applied to the
analysis of plane as well as cylindrical geometry configurations while the fluid behaviour can be considered
Newtonian or non-Newtonian provided the axial velocity distribution can be represented by an analytical
function of position. The method is simple and gives very accurate results when compared with numerical
estimates previously presented in the literature. A number of comparisons are presented in this work showing
that maximum deviations are always below 3.5% in terms of mixing cup temperature. The technique is so
simple that it should be useful for the analysis of similar problems in the field of convective heat and mass
transfer.

NOMENCLATURE

Airy function

C, parameter defined by equation (14)
C, parameter defined by equation (15)
C; parameter defined by equation (16)
C, parameter defined by equation (17)
c, specific heat capacity

F, first term in equation (20)

F, first perturbation term in equation (20)

g parameter defined by equation (27a)

Gz Graetz number

k thermal conductivity

M constant to denote flat (0) or cylindrical
geometry (1)

m coefficient in equation (10)

N constant index in power-law model

n coefficient in equation (10)

P[;] incomplete gamma function [see equation
(35)]

P parameter defined by equation (27b)

Pr Prandtl number

q parameter in equation (35)

R tube radius or half thickness of a flat duct

r normal coordinate measured from the

axial axis of the duct
Re Reynolds number
S Laplace transform variable
T dimensionless temperature
T, dimensionless mixing cup temperature
t dimensional temperature
t, inlet fluid temperature

t, wall temperature

(V)  average velocity in the duct

w coefficient in equation (10)

X transformed variable of Y when § —
x axial flow coordinate

*Research Member of Consejo Nacional de Investigaciones
Cientificas y Técnicas (CONICET), Argentina.

Y dimensionless radial (pipe) or cross-
channel (flat duct) coordinate
Z dimensionless axial coordinate

Greek symbols
) parameter in equation (28)
r¢) gamma function
¥ parameter in equation (28)
é parameter in equation (31)
I density
T variable in equation (35)
¢ Laplace transform of T
do first term in equation {7), =1
first perturbation term in equation (7)

1
¢, second perturbation term in equation (7)
d3 third perturbation term in equation (7)
W constant in equation (35)

Superscripts
! denotes first derivative
denotes second order derivative

"

1. INTRODUCTION

IN MANY industrial applications, heating or cooling is
achieved by allowingtheliquid to flowin ducts, oriii the
form of a thin film, where the solid boundaries are
maintained at a different temperature from that of the
bulk. There are many practical situations in which the
velocity field is fully developed but not the temperature
field. Forexample a molten polymer, because of its high
viscosity, can be regarded as a fully developed flow and
due to its low thermal conductivity will present an
undeveloped temperature field. Other examples can be
found in food engineering processes related with the
cooling and heating of fluid streams. Moreover the
rheological behaviour of many of these fluids can only
be described with a non-Newtonian model.

Possibly due to these reasons, investigations in this
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field have led to a large body of literature, including
entire books. When the flow is steady and laminar and
the fluid properties are assumed to be constant, the so
called Graetz-Nusselt problem is met. Its solution
allows the prediction of the mixed-cup temperature
along the system and the local flux at the heating or
cooling surface. This is not, however, very simply
solved.

Since the problemislinear the analyticalsolution can
be obtained by the method of separation of variables
and takes the form of an infinite sum of eigenfunctions.
Theseries does not converge very rapidly when the duct
is short. This difficulty is avoided by using a sort of
Leévéque [1] solution for small contact times and the
series solution for large contact times.

The case of a Newtonian fluid was repeatedly solved
with different analytical approaches by many authors
after the pioneering works of Graetz [2] and Nusselt
[31, until Brown [4] presented his accurate work in
which up to eleven eigenvalues were determined by a
very precise numerical technique. Brown’s [4]
numerical results can be considered as the most
accurate for the case of Newtonian fluids. They can be
used in circular pipes or in flat ducts.

In the case of non-Newtonian fluids the situation is
worse as the eigenfunctions must be determined, with
considerable effort, for each particular case, Lyche and
Bird [5] investigated the problem of non-Newtonian
fluids with a ‘power law” model which has been proven
useful for estimating the pressure drop in flow systems.
itisinterestingto mentionthat they only presented four
eigenvalues for integer values of the inverse power
index of the non-Newtonian model. More recently
Suckow et al. [6] presented a contribution which
provides the first two eigenvalues for a dilatant non-
Newtonian fluid in which the inverse power index was
0.5. When the method is compared with previous
results for Newtonian fluids a rather poor agreement is
found due to the small number of calculated eigen-
values.

On the other hand, some attempts have been made to
extend Lévéque’s [ 1]solution,suchas those of Shihand
Tsou[7]and Richardson [8]. However inspite of these
great efforts, the range of validity for the expressions
obtained is not known but they are certainly valid for
short tube length or large Graetz (Gz) numbers.

The intention of this contribution is to develop a
rapid analytical procedure to estimate the local heat
flux and the mixing-cup temperature along the duct
which can be applied to any kind of non-Newtonian
fluid model and geometrical flow configuration with a
certain degree of symmetry. Also, the method can
produce results valid in the whole range of Graetz
numbers (0 € Gz < o).

To achieve these purposes a matching technique will
be used. Asymptotic expressions of local flux deduced
in the Laplace transform ficld, valid for small and large
values, are matched with a suitable expression. When
antitransformed it provides an analytical expression
for the local flux. Finally the results obtained are
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compared with the corresponding results generated by
the infinite series referred to above, The agreement is
excellent, as will be shown below.

2. ANALYSIS

Assuming laminar flow, constant physicochemical
properties of the fluid, and a power law model for
describing the rheological behaviour of the fluid, the
dimensionless energy balance can be written as

a oT oT
Iy Yo oy yvey 2L
6Y( 6Y) Y-y )62 0
where
t—tg r
=— Y=[|—-] 2a,b
ts_tO (R) ( : )
Z = n{M + 1){(x/R)/(Re Pr), (2¢)
Re Pr= g(i(k‘/i, @d)

t being the dimensional temperature, x the axial flow
coordinate, k the thermal conductivity of the fluid, {V)
theaverage velocityinthe duct, R the tube radius or half
thickness of a flat duct, r the normal coordinate
measured {rom the axial axis of the duct, C, the specific
heat capacity, p the fluid density and M =[0,1]is to
denote flat and cylindrical geometry, Parameter n will
be defined below.

In writing equation (1) it is assumed that molecular
axial transport and mechanical energy dissipation are
negligible. Since the problem is linear, equation (1) will
be solved subject to the following initial and boundary
conditions:

T=0, Z2=0 1>Y>0, (3a)
T=1 Z20 Y=1, (3b)
aT

37 5 0 0 (3¢)

Solutions to other situations can be found by a suitable
application of the superposition principle. By defining

¢ = SJ.w T exp(—SZ)dZ. @
[}

Equation (1) can be reduced to the following ordinary
differential equation:

d do
S yM I o yM— YNt 5
dY( dY) YHI-YESe )
with the boundary conditions
=1, Y=1,
i (6a,b)
¢'=0, Y=0

where the prime denotes first derivative with respect
toY.

A general solution to equation (5) would lead to a
series expression which should be avoided. Rather
asymptoticsolutionsforsmallandlarge S values will be
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attempted. In fact when S — 0, equation (5) itself
suggests the following series as a solution:

¢ = Po+S5b,+5¢,+5°¢;+0(5%) ©)]

which once replaced into equation (5) and terms of like
power of § are equated generates the following set of
independent ordinary differential equations:

d M dd" M
i MZTUY - YN+ 1 i
5 (Y =M=y, @)
withi = 1,2,...and ¢, = 1. Clearly equations (8) must
be solved with

¢{1)=0; ¢{0)=0. (%a,b)

After some simple algebraic manipulations it can be
shown that

-1— E‘E =n+mS+wS?+0(53) (10)
SdY |y,
where
n=¢()=M+1D)"'—(N+M+2)"L, (11)

m = ¢iy(1) = 2[(M+ 1)(M +3)]~*
—[Cy+(M+1)" (N +A +4)"!
FIN+M+2)N+3)CN+M+5)]" 1 +Cpn, (12)
w = ¢4(1) = [B(M+ (M +3)M+5]!
—{Cs+[B(M+1)(M+3)]""}
X(N+M+6)"'+(Cy+CeN+M+7)71
—C(3AN+M+8) ' +Cym+(C,~Chn
with
C; = [(N+M+2)(N+3)]" —[2(M+1)]7*, (14)
Cy = Cy—Co+ CP=[S(M+1)M+3)]™Y,  (15)
Cy =[Cy+(M+ 1)1/ N+M+4(N+5)], (16)
(1/Ca) = 2N +M+2)(N +3P@N + M +5). 17)

On the other hand when S — o0, a change of the
independent variable Y is suggested,

X =S"(1-Y).

(13)

(18)

By replacing Y by X in equation (5) and expanding by
the binomial theorem the resulting expressions yield

d’¢ d¢
9 _msmnZE
A dx

dx?
x [1=(NX/2)S™ 1314+ 0(S72). (19)

Equation (19) can be solved by the following series
solution:

¢ = Fo(X)+S5™13F (X)+0(5™ ).

+(N+1)X¢

(20)

By introducing equation (20) into equation (19) and by
collecting terms of equal power of S, the following
system of ordinary differential equations results:

Fi = (N+1)XFo, @n
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F{—MF}, = (N+1)XF,—(N+1)(N/2X?F, (22
subject to
Fo0) =1, F(0)=Fq(x0)=Fy(0) =0 (23)

where primes and double primes denote first and
second derivatives with respect to X. The general
solution to equation (21) is well known in terms of Airy
functions [4( )] [9]

Fo = AL(N+1)'°X1/4(0) (24)

while equation (22) only needs a particular solution,

which can be written in terms of Fo,
Fy =(0.5M+0.IN)XF,~0.INX?F,.  (25)

Thus when S — oo, the following asymptotic ex-
pression is found for the flux in the transformed field:

1d¢

Sdrl,., =gS~*—p/s (26)

where
g = —A{O)N +1)'3/4,0), (279)
p=05M+0.1IN. (27b)

Expressions (10} and (26), valid for small and large
values of Srespectively, should be matched by a suitable
rational expression in such a way that its expansions,
for small and large values of S, should coincide with
equations (10) and (26), respectively. The first proposal
is

1 d¢ _g(S+p)”

SdY[y=y (S+9)

provided the unknowns B and y fulfil the following
equations:

(28)

gB'? = ny, (29)
(1/3)gB =Py~ 1 —gpPy~2 = m. (30

Thus equation (28) will coincide with equation (10) up
to terms of order S and with equation (26) up to terms of
order $™23, However equation (28) can be anti-
transformed if § > 7, as will be shown below. In those
cases where such a conditionis not met a more accurate
rational expression is needed. A new trial is made with

Ldg| _gS+P™ __pS
SdY|y-, S+y  S+oF

Byexpandingequation(31)forsmallandlarge values of
S and comparing with equations (10) and (26),
respectively, the three unknowns must fulfil the
following system of algebraic equations:

€Y

3mn?y362 = —3n26%* +g°8*—3n%py?, (32)
Onby*s3 — 3mdgPy26% — gb5°
+18pn®y®~9wn’y%83 = 0. (33)

After solving the system (32)-(33), § can be calculated
from equation (29). It should be noticed that equation
(31) coincides exactly with equations (10) and (26) for
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small and large values of S respectively although the
algebraic complexity of the problem has increased. In
any case it is not difficult to reduce the system (32)~(33)
in a unique non-linear algebraic expression with only
one unknown which can be solved by Newton-
Raphson methods. It should be stressed that equation
(28)is a particular case of equation (31). Thus by taking
the antitransform of equation (31) the expression for
local flux is found,

oT

vl ™ [gZ~ 7 exp(—BZ)/T(2/3)]

+g(B~1)"? exp(—yZ)P[3;(B~7)Z]
d
—p [Z exp(=62)] (34

where I'( ) denotes gamma function and P[;] the
incomplete gamma function:

P[Q;w]=—LJwt“" exp(~1t)de.  (35)

@ Jo

The mixing-cup temperature can be calculated from
equation (34) taking into account its definition and the
energy balance {equation (1)]:

1
7. =1 J Y1~ YN+ YT dY

0
1 f?er
T nJ, 8Y

Introducing equation (34) into equation (36) yields

—p\1/3
Tm=P[%;ﬂZJ—(%) exp(—72)
x P[3;(B=1)Z1~(/nZ exp(—52). (1)

Expression (37) should be useful in the range of all Z
values (0 < Z < o0) representing a continuous func-
tion of Z for each particular situation (M and N given).
It should be stressed that the procedure can be applied
to any other kind of rheological model provided the
velocity distribution function is known. Moreover the
case of shear stress dependent thermal diffusivity could
be handled with exactly the same procedure.

It is possible to find an expression for the local flux
and mixing-cup temperature by applying the super-
position or convolution theorem when other boundary
conditions must be considered.

dz.

y=1

(36)

3. RESULTS AND DISCUSSION

Though most previous works are based on a
cylindrical geometric configuration, it is also interest-
ing to analyze the accuracy of approximate results
obtained in flat ducts. Figure 1 presents deviations
between approximate values of T, calculated with

equation (37) and those generated by the very accurate -

numerical calculations of Brown [4] for Newtonian
fluids (N = 1). For plane geometry (M = 0) there is no
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FIG. 1. Percentage deviations between our T, estimates (full

line) and Suckow et al’s [6] (broken line) with almost exact

Brown’s [4] values. Plane geometry (M = 0) and Newtonian
fluids (N = 1).

need to take into account the second term of equation
(31) which is equivalent to assuming p = 0 in equation
(37). Under these conditions the method is straight-
forward since the only difficulty is the numerical
calculation of the incomplete gamma function P[;]
which can be performed by the series suggested by
Zelen [10]. It is shown that the maximum deviation is
about 3.5% in the whole range of Z values. Results of
Suckow et al. [6] are also presented for comparison
purposes (N = 1)showing that their results can only be
considered accurate when Z > 0.5. This conclusion
should have been expected since only two eigenfunc-
tions were evaluated by Suckow et al. [6]. However
since their results are the only available heat transfer
calculations for non-Newtonian fluids in flat ducts
these and our approximations are presented in Table 1
(N = 0.5). Once again it is shown that the agreement is
fair when Z > 0.5. Taking into account the case of
Newtonian fluids, we can safely conclude that our
approximate procedure will predict fairly accurate
values of T, in the whole range of Z values. When heat
transfer in tubes is considered (M = 1)itis not possible
to find a suitable root of y with equations (29) and (30).
Thus the more complex system {32)-{33) has to be
solved for y and 6. Once again the mixing-cup
temperature (T,) calculated with equation (37) is
graphically compared in Fig. 2 with the very accurate
results of Brown [4] for N = 1. The agreement is
excellent, better thanin the case of flat ducts sincein this
case (M = 1) more parameters are needed to fit the
asymptotic equations of the local flux in the Laplace
field with the rational expression. It should be noted
that when Z < 0.002 Brown’s [4] solution begins to
depart from the exact solution. As pointed out in the
introduction a series solution would need a con-
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Table 1. Comparison of T;, values obtained in this work with those of Suckow et al. [6]. Plane geometry (M = 0)and N = 0.5

zZ 0.001 0.002 0.005 0.01

0.02

0.05 0.1 0.2 0.5 1

This work

Suckow et al.

(6]

0.015409 0.024463 0.045079 0.071597 0.113738 0.209454 0.330092 0.507401 0.798038 0.953912
0.084093 0.081402 0.074539 0.066698 0.061739 0.096028 0204511 0.409649 0.762305 0.947831

siderable number of terms to predict the flux for
such small values of Z. In this region our solution
coincides exactly with the asymptotic solution of Shih
and Tsou [7] (dashed line Fig. 2) which is shown to be
valid up to Z ~ 0.1. Incidentally it can be shown that
our simple analytical asymptotic solution deduced in
this work with only two terms, once inverted, also
coincides with the numerical solution of Shih and Tsou
[7Jupto Z ~ 0.1.(The maximumdeviationat Z = 0.1
is about 49;.)

In Table 2 our results are compared with tabulated
values of Lyche and Bird [5]. The agreement is excellent
within the range in which Lyche and Bird’s [5] results
apply (Z = 0.05).

It can be concluded that the method presented here
can be very useful, due to its simplicity, to estimate the
flux and the mixing-cup temperature in laminar flow
configurations formed by non-Newtonian fluids. It is
not restricted to any particular rheological model.
Once the velocity profile is known the method can be
used to estimate the values of n, m, w, g and p.
Furthermore the method should also be useful to
estimate the rate of dissolution of a solid by the effect of
a laminar flow of 2 non-Newtonian fluid.

It is interesting to note that the method herewith
presented demands much less effort than the extended
Lévéque solution of Shih and Tsou [7] or Richardson

IG. 2. Percentage deviations between our T, estimates (full

ne) and Shih and Tsou’s [7] (broken line) with almost exact

rown’s [4] values. Cylindrical geometry (M =1) and
Newtonian fluids (N = 1).

Table 2. Comparison of Brown'’s (almost exact) results with

those obtained in this work, Shih and Tsou [7] and Lyche and

Bird [5]). Cylindrical geometry (M = 1)and Newtonian fluids
(N=1)

Shihand Lyche and
Z  Brown[4] Thiswork Tsou[7] Bird [5]
0001 0.038715  0.038247  0.038251 —
0002 0.059736  0.059659  0.059683 —
0005 0.106572  0.106451  0.106580 -
0.01 0.163781  0.163482  0.163814 —
002  0.248894 0248405  0.249035 —
0.05 0421213 0421350  0.422248 0421
0.1 0.604701  0.605891  0.610085 0.605
0.2 0.810290 0810310  0.840523 0.810
0.5 0978856 0978675  1.098401 0.979
1 0.999454 0999514  0.942796 0.999

[8] since our procedure does not require the numerical
solution of any ordinary differential equations.
Moreover the results of Shih and Tsou [7] are only
valid in a limited range of Z values as shown in Fig. 2
(dashed curve) for the case of N = 1and M = 1. In fact
when Z > 0.2 their results are no longer valid.

Finally our procedure can be extended to analyze
other related situations such as the effect of mechanical
energy dissipation or cases where boundary conditions
are given in terms of flux rather than the solid-fluid
temperature.
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TRANSFERT THERMIQUE A DES FLUIDES NEWTONIENS ET NON-NEWTONIENS EN
ECOULEMENT LAMINAIRE

Résumé —On présente une nouvelle approche analytique pour estimer la flux thermique local ou moyen entre
une paroimaintenue d unetempératuredonnée etun fluide quis’écouleenrégimelaminaire. La procédure peut
étre appliquée a I'analyse des configurations planes aussi bien que cylindriques, tandis que le fluide peut étre
newtonien ou non, pourvu que ladistribution de vitesse axiale soit représentée par une fonction analytique de
position. Laméthode est simple et elle donne des résultats trés précis en comparaison des résultats numériques
présentés antérieurement. Quelques comparaisons sont données dans cet article qui montre que les déviations
maximales sont toujours inférieures 4 3,5% en terme de température de mélange. La technique est si simple
qu'elle peut étre utile dans "analyse de problémes semblables dansle domaine du transfert convectifde chaleur
et de masse.

WARMEUBERTRAGUNG AN NEWTONSCHE UND NICHTNEWTONSCHE FLUIDE
UNTER LAMINAREN BEDINGUNGEN

Zusammenfassung—Es wird ein neuer analytischer Ansatz zur Bestimmung des ortlichen und mittleren
Wirmestroms von einer Wand, die aufkonstanter Temperatur gehalten wird, aneinlaminar strdmendes Fluid
vorgeschlagen. Das Verfahren kann sowohl auf ebene Flichen als auch Zylinder angewandt werden und
sowohl bei Newtonschen als auch nicht-Newtonschen Fluiden, vorausgesetzt, daB die axiale
Geschwindigkeitsverteilung als analytische Fuktion des Ortes angegeben werden kann. Das Verfahren ist
einfach und liefert sehr genaue Ergebnisse, wenn man es mit numerischen Naherungsverfahren vergleicht, wie
siein der Literatur zu finden sind. In der Arbgeit wird anhand mehrerer Vergleiche gezeight, daB die maximale
Abweichung immer weniger als 3,59 bezogen auf die Mischungstemperatur, ausmacht. Das Verfahren ist so
einfach, daB es mit Vorteilaufdie Untersuchung dhnlichter Problemeim Gebiet derkonvektiven Warme-und
Stoffiibertragung angewandt werden kdnnte.

TENJAONEPEHOC K HEIOTOHOBCKHUM U HEHBIOTOHOBCKHM XHJKOCTAM IPH
TEYEHHU B TAMHWHAPHOM PEXHME

Aunoraums—IIpencrasnes HOBBIIT aHAaNMHTHYeCKHil METON OLCHKH JOKaneHOii M cpemueii BENHYHHBI
TEMJIOBOro MOTOKa OT CTEHKH, MOLRCPRHBAeMOll MpH 3aJaHHO TeMNEpaType, K MOTOKY XHAKOCTH
NpH JIAMYHAPHOM TECYCHHH XHAKOCTH. MeTon MOXHO HCIONb30BaTh IS aHA/HIa KAK MIOCKOfl, Tak
H IHIHHAPHYECKOH reOMETPHH, 2 MOBEAEHHE XHIAKOCTH MOXET PaccMaTpHBAaTbCH KaK HbIOTOHOBCKOE
HIH HEHBLIOTOHOBCKOE, €CNTH pacmpefelicHHe OCeBOfl CKOpPOCTH MPEACTABMMO B BHAC AHANHTHYECKOi
GyHKUHH NPOCTpaHCTBEHHOM kKoopAuHaTH. MeToa mpocT M naeT BecbMa TOUHBIE PE3yNbTaThl MpH
CPABHCHHH C HMEIOUWHMHCS B JINTEPATYPE HHCIEHHBIMI OLEHKAMH.

ITpoBeneHO HeCKOIBKO CpaBHEHH (i, NOKA3HIBAIOUIHX, YTO MAKCHMANLHAA NOTPEUIHOCTE HE TIPEBLILIACT
3,59, mo TempepaType CMEIEHUA.

MeToa HAcTONBLKO NPOCT, YTO €ro CREAyeT HCIOAbL30BaTh MNA AHAJOTHYHBIX 3afla4 KOHBEKTHBHOTO

TEenno-H Macconeperoca.





